This paper presents algorithms for vision-based detection and classification of vehicles in monocular image sequences of traffic scenes recorded by a stationary camera. Processing is done at three levels: raw images, blob level and vehicle level. Vehicles are modeled as rectangular patches with certain dynamic behavior. Kalman filtering is used to estimate vehicle parameters. The proposed method is based on the establishment of correspondences among blobs and vehicles, as the vehicles move through the image sequence. Experimental results from highway scenes are provided, which demonstrate the effectiveness of the method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-based vehicle classification


    Beteiligte:
    Gupte, S. (Autor:in) / Masoud, O. (Autor:in) / Papanikolopoulos, P. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    730243 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision-Based Vehicle Classification

    Gupte, S. / Masoud, O. / Papanikolopoulos, N. P. et al. | British Library Conference Proceedings | 2000


    Vision-based approach for urban vehicle detection & classification

    Pham, Long Hoang / Duong, Tin Trung / Tran, Ha Manh et al. | IEEE | 2013


    Algorithm for vision-based vehicle detection and classification

    Hu, Youpan / He, Qing / Zhuang, Xiaobin et al. | IEEE | 2013


    Computer Vision System for Automatic Vehicle Classification

    Yuan, X. / Lu, Y.-J. / Sarraf, S. | British Library Online Contents | 1994