State-of-charge (SOC) estimation is critical for reliable operation of Li-ion batteries (LIBs). However, the distinct electrochemical characteristics coupled with harsh low-temperature environments make a single estimator struggle to robustly estimate the volatile SOC of multitype LIBs. To address these issues, this article proposes a hard-soft hybrid prompt learning method to unleash the potential of a pretrained large language model (LLM) for SOC estimation. A textual encoder is introduced to convert LIB measurements into hard text prompts for language modeling, naturally eliciting the pretrained LLM to capture the intrarelations of measured values over time and their interrelations with contextual semantics for accurate estimates. A side adapter network is constructed to reparameterize model adaptation towards different LIB tasks into optimizations within a low-dimensional subspace, strengthening the estimation generalization of the pretrained LLM in a parameter-efficient manner. A knowledge infusion mechanism is designed to encapsulate task-specific information as soft prompt vectors for model integration along forward propagation, dynamically conditioning the hidden states inside the pretrained LLM to enhance the estimation robustness against SOC volatilities. Extensive experiments verify that the hybrid prompt-driven LLM can simultaneously perform estimations for multitype LIBs under diverse operations and sub-zero temperatures with superior accuracy, generalization, and robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid Prompt-Driven Large Language Model for Robust State-of-Charge Estimation of Multitype Li-ion Batteries


    Beteiligte:
    Bian, Chong (Autor:in) / Han, Xue (Autor:in) / Duan, Zhiyu (Autor:in) / Deng, Chao (Autor:in) / Yang, Shunkun (Autor:in) / Feng, Junlan (Autor:in)


    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    5954636 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Data-Driven Battery State of Charge Estimation for Hybrid Electric Vehicles

    Bonfitto, Angelo / Kollmeyer, Phillip J. / Anselma, Pier Giuseppe et al. | SAE Technical Papers | 2021


    LingoTrip: Spatiotemporal context prompt driven large language model for individual trip prediction

    Zhenlin Qin / Pengfei Zhang / Leizhen Wang et al. | DOAJ | 2025

    Freier Zugriff

    Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

    Gorski, David / Wu, Hai / Li, Meng-Feng et al. | SAE Technical Papers | 2012


    Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

    Li, M.-F. / Chen, W. / Wu, H. et al. | British Library Conference Proceedings | 2012