The thermal subsystem of the Mars Express (MEX) spacecraft keeps the on-board equipment within its predefined operating temperatures range. To plan and optimize the scientific operations of MEX, its operators need to estimate in advance, as accurately as possible, the power consumption of the thermal subsystem. The remaining power can then be allocated for scientific purposes. We present a machine learning pipeline for efficiently constructing accurate predictive models for predicting the power of the thermal subsystem on board MEX. In particular, we employ state-of-the-art feature engineering approaches for transforming raw telemetry data, in turn used for constructing accurate models with different state-of-the-art machine learning methods. We show that the proposed pipeline considerably improve our previous (competition-winning) work in terms of time efficiency and predictive performance. Moreover, while achieving superior predictive performance, the constructed models also provide important insight into the spacecraft's behavior, allowing for further analyses and optimal planning of MEX's operation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft


    Beteiligte:
    Petkovic, Matej (Autor:in) / Boumghar, Redouane (Autor:in) / Breskvar, Martin (Autor:in) / Dzeroski, Saso (Autor:in) / Kocev, Dragi (Autor:in) / Levatic, Jurica (Autor:in) / Lucas, Luke (Autor:in) / Osojnik, Aljaz (Autor:in) / Zenko, Bernard (Autor:in) / Simidjievski, Nikola (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    1810020 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Predicting Thermal Power Consumption of the Mars Express Satellite with Machine Learning

    Breskvar, Martin / Kocev, Dragi / Levatic, Jurica et al. | IEEE | 2017



    Predicting Venus Express Thermal Power Consumption

    Penedones, Hugo / Sousa, Bruno / Donati, Alessandro et al. | AIAA | 2008


    Discovering outliers in the Mars Express thermal power consumption patterns

    Petkovic, Matej / Lucas, Luke / Stepisnik, Tomaz et al. | IEEE | 2021


    Research of thermal conditions of the "Mars Express" spacecraft fairing

    Zelenov, I. A. / Ivankov, A. A. / Klishin, A. F. et al. | British Library Conference Proceedings | 2005