The hidden Markov field (HMF) model has been used in many model-based solutions to image analysis problems, including that of image segmentation, and generally gives satisfying results. However, when the class image is non stationary, the unsupervised segmentation results provided by HMF can be poor. In this paper, we tackle the problem of modeling a non stationary hidden random field and its effect on the unsupervised statistical image segmentation. We propose an original approach, based on the recent triplet Markov field (TMF) model, to segment non stationary images. Experiments indicate that the new algorithm performs better than the classical one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Segmenting non stationary images with triplet Markov fields


    Beteiligte:
    Benboudjema, D. (Autor:in) / Pieczynski, W. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    329239 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Segmenting Non Stationary Images with Triplet Markov Fields

    Benboudjema, D. / Pieczynski, W. | British Library Conference Proceedings | 2005


    Unsupervised image segmentation using triplet Markov fields

    Benboudjema, D. / Pieczynski, W. | British Library Online Contents | 2005


    Multisensor triplet Markov fields and theory of evidence

    Pieczynski, W. / Benboudjema, D. | British Library Online Contents | 2006


    An algorithm for segmenting cytological images

    Konevsky, O. L. / Stepanets, Y. V. | British Library Online Contents | 2008


    Active Region Models for Segmenting Medical Images

    Ivins, J. / Porrill, J. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994