This article proposes an adaptive state-of-health (SOH) estimation method for lithium-ion (Li-ion) batteries using machine learning. Practical problems with feature extraction, cell inconsistency, and online implementability are specifically solved using a proposed individualized estimation scheme blending offline model migration with online ensemble learning. First, based on the data of pseudo-open-circuit voltage measured over the battery lifespan, a systematic comparison of different incremental capacity features is conducted to identify a suitable SOH indicator. Next, a pool of candidate models, composed of slope-bias correction (SBC) and radial basis function neural networks (RBFNNs), are trained offline. For online operation, the prediction errors due to cell inconsistency in the target new cell are then mitigated by a proposed modified random forest regression (mRFR)-based ensemble learning process with high adaptability. The results show that compared to prevailing methods, the proposed SBC-RBFNN-mRFR-based scheme can achieve considerably improved SOH estimation accuracy (15%) while only a small amount of early-age data and online measurements are needed for practical operation. Furthermore, the applicability of the proposed SBC-RBFNN-mRFR algorithms to real-world operation is validated using measured data from electric vehicles, and it is shown that a 38% improvement in estimation accuracy can be achieved.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Offline and Online Blended Machine Learning for Lithium-Ion Battery Health State Estimation


    Beteiligte:
    She, Chengqi (Autor:in) / Li, Yang (Autor:in) / Zou, Changfu (Autor:in) / Wik, Torsten (Autor:in) / Wang, Zhenpo (Autor:in) / Sun, Fengchun (Autor:in)


    Erscheinungsdatum :

    2022-06-01


    Format / Umfang :

    5157928 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Approaches for Lithium-Ion Battery Health Parameters Estimation

    Mandhana, Abhishek / Gambhir, Ameya V / Joshi, Umita Deepak | SAE Technical Papers | 2022


    Online battery state of health estimation during charging

    KUOVO MIKKO / VATANEN HARRI / JUNTUNEN RAIMO | Europäisches Patentamt | 2024

    Freier Zugriff

    ONLINE BATTERY STATE OF HEALTH ESTIMATION DURING CHARGING

    KUOVO MIKKO / VATANEN HARRI / JUNTUNEN RAIMO | Europäisches Patentamt | 2022

    Freier Zugriff


    Online Estimation of Lithium-Ion Battery Capacity Using Transfer Learning

    Shen, Sheng / Sadoughi, Mohammadkazem / Hu, Chao | IEEE | 2019