Autonomous driving requires various computer vision algorithms, such as object detection and tracking. Precisely-labeled datasets (i.e., objects are fully contained in bounding boxes with only a few extra pixels) are preferred for training such algorithms, so that the algorithms can detect exact locations of the objects. However, it is very time-consuming and hence expensive to generate precise labels for image sequences at scale. In this paper, we propose DeepBbox, an algorithm that "corrects" loose object labels into right bounding boxes to reduce human annotation efforts. We use Cityscapes [1] dataset to show annotation efficiency and accuracy improvement using DeepBbox. Experimental results show that, with DeepBbox, we can increase the number of object edges that are labeled automatically (within 1% error) by 50% to reduce manual annotation time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DeepBbox: Accelerating Precise Ground Truth Generation for Autonomous Driving Datasets


    Beteiligte:
    Rathore, Govind (Autor:in) / Lin, Wan-Yi (Autor:in) / Kim, Ji Eun (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    2739551 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cooperative Raw Sensor Data Fusion for Ground Truth Generation in Autonomous Driving

    Ye, Egon / Spiegel, Philip / Althoff, Matthias | IEEE | 2020


    GROUND TRUTH DATA GENERATION FOR DEEP NEURAL NETWORK PERCEPTION IN AUTONOMOUS DRIVING APPLICATIONS

    TILMAN WEKEL / JOACHIM PEHSERL / JACOB MEYER et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    GROUND TRUTH DATA ACQUISITION AND PROCESSING SYSTEM FOR AUTONOMOUS DRIVING METHOD THEREOF

    LIM WONTEAK / NOH HYEONBIN / PARK JAESUNG et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Synthetic Datasets for Autonomous Driving: A Survey

    Song, Zhihang / He, Zimin / Li, Xingyu et al. | IEEE | 2024