Designing an efficient autopilot for quadrotor can be a very long and tedious process. This comes from the complex nonlinear dynamics that rule the flying robot behavior as battery discharge, blade flapping, gyroscopic effect, frictions, etc. In this paper we propose to use a traditional cascaded control architecture enhanced with Deep Neural Network (DNN). The idea is to easily setup a control algorithm using linear cascaded laws and then correct unmodelled dynamics and approximations made during the linear control design with the DNN. The tuning process is reduced to choice of proportional and derivative gains of each control loop. The approach is tested in the ROS/Gazebo simulation environment and experimentally in a motion capture room. Results confirm that the methodology significantly improves the performance of linear approaches on nonlinear quadrotor system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neural Enhanced Control for Quadrotor Linear Behavior Fitting


    Beteiligte:


    Erscheinungsdatum :

    21.06.2022


    Format / Umfang :

    4430752 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Modeling and Simulation of a Quadrotor using Curve Fitting Method

    Kaya, Derya / Kutay, Ali Turker | AIAA | 2015


    Quadrotor quaternion control

    Carino, J. / Abaunza, H. / Castillo, P. | IEEE | 2015


    Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking

    Ahtisham Lone / Quanmin Zhu / Hamidreza Nemati et al. | DOAJ | 2024

    Freier Zugriff

    Non-linear Control of a Quadrotor with Actuator Delay

    Kartal, Muhammed R. / Ignatyev, Dmitry / Zolotas, Argyrios | AIAA | 2024