This paper examines the potential of AutoML for predicting the range and State of Charge (SOC) of Electric Vehicles (EVs). Unlike traditional SOC estimation methods, such as Coulomb counting, Equivalent Circuit Models (ECM), or Machine Learning (ML)-based approaches, Range Estimation Algorithms (REA) consider route-specific factors to offer more precise battery depletion predictions. However, ML-based REAs can be complex and time-consuming to train, necessitating a deep understanding of Artificial Neural Networks (NN) architecture and optimization strategies. AutoML addresses this issue by automating the selection of the optimal NN architecture, hyper- parameters, and data preprocessing techniques, making it more accessible for those with limited expertise to develop effective ML models. Our study centers on constructing SOC estimation and range estimation models using the AutoML library AutoGluon, developed by Amazon Web Services (AWS). Our findings indicate that while SOC estimation alone has limitations in predicting an EV's remaining range, REAs are specifically designed to overcome this challenge by building on SOC estimation to accurately forecast the remaining distance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Electric Vehicle's Range and State of Charge Estimations using AutoML


    Beteiligte:
    Witvoet, Kyler (Autor:in) / Saad, Sara (Autor:in) / Vidal, Carlos (Autor:in) / Ahmed, Ryan (Autor:in) / Emadi, Ali (Autor:in)


    Erscheinungsdatum :

    21.06.2023


    Format / Umfang :

    1396382 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Electric Vehicle's Self-Generating Device

    KANG DAE SUNG | Europäisches Patentamt | 2024

    Freier Zugriff

    An electric vehicle's fire suppression system

    CHON SUNG DO | Europäisches Patentamt | 2025

    Freier Zugriff