We present an algorithm for identifying and tracking independently moving rigid objects from optical flow. The proposed method uses the fact that each distinct object has a unique epipolar constraint associated with its motion. This is in contrast to using local optical flow information for segmentation. Thus motion discontinuities based on self-occlusion are distinguished from those due to separate objects. The use of epipolar geometry allows for the determination of individual motion parameters for each object as well as the recovery of relative depth for each point on the object. The segmentation problem is formulated as a scene partitioning problem and a statistic-based algorithm which uses only nearest neighbor interactions and a finite number of iterations is developed. A Kalman filter based approach is used for tracking motion parameters with time. The algorithm assumes an affine camera where perspective effects are limited to changes in overall scale. No camera calibration parameters are required.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rigid body segmentation and shape description from dense optical flow under weak perspective


    Beteiligte:
    Weber, J. (Autor:in) / Malik, J. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    450498 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Rigid Body Segmentation and Shape Description from Dense Optical Flow under Weak Perspective

    Weber, J. / Malik, J. / IEEE Computer Society et al. | British Library Conference Proceedings | 1995


    Dynamic rigid motion estimation from weak perspective

    Soatto, S. / Perona, P. | IEEE | 1995


    Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

    Stückler, J. r. / Behnke, S. | British Library Online Contents | 2015


    Dynamic Rigid Motion Estimation from Weak Perspective

    Soatto, S. / Perona, P. / IEEE Computer Society et al. | British Library Conference Proceedings | 1995