This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Master-Slave Synchronization for Trajectory Tracking Error Using Time-Delay Recurrent Neural Networks via Krasovskii-Lur’e Functional for Chua’s Circuit


    Beteiligte:


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    390113 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Master-slave configuration for VCSEL synchronization

    Spencer, P. S. / Shore, K. A. / Mirasso, C. R. et al. | British Library Conference Proceedings | 1998



    Improved robust stability criteria for time‐delay lur'e system

    Duan, Wenyong / Fu, Xiaorong / Liu, Zhengfan et al. | British Library Online Contents | 2017


    Encoding Bird's Trajectory using Recurrent Neural Networks

    Ardakani, Ilya S. / Hashimoto, Koichi | British Library Conference Proceedings | 2017