SenseMyCity is an opportunistic mobile crowdsensing tool available for researchers to design and implement data collection campaigns for studying large-scale processes. We discuss how our tool addresses two critical aspects of large scale data gathering campaigns: compliance with data protection guidelines and low intrusiveness. The latter is achieved by low battery consumption and low interaction with the participants, which lead us to implement an algorithm to automatically start gathering data when participants move (and stopping when they stop). Then, we report on three interdisciplinary data collection case studies on the wild in the city of Porto involving overall 641 participants, reflecting on the participant engagement mechanisms and the results of the data collection campaign. Finally, we report on the most common timestamping and position mismatches observed in the data collected in such uncontrolled scenarios from a wide variety of hardware and software versions, and that can impact data analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Opportunistic mobile crowdsensing for gathering mobility information: Lessons learned


    Beteiligte:


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    661762 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    INFERRING LEFT-TURN INFORMATION FROM MOBILE CROWDSENSING

    SHIN KANG G / CHEN DONGYAO | Europäisches Patentamt | 2023

    Freier Zugriff

    INFERRING LEFT-TURN INFORMATION FROM MOBILE CROWDSENSING

    SHIN KANG G / CHEN DONGYAO | Europäisches Patentamt | 2021

    Freier Zugriff

    A Deep Learning-Based Mobile Crowdsensing Scheme by Predicting Vehicle Mobility

    Zhu, Xiaoyu / Luo, Yueyi / Liu, Anfeng et al. | IEEE | 2021


    Mobile crowdsensing with mobile agents

    Leppänen, T. (Teemu) / Lacasia, J. Á. (José Álvarez) / Tobe, Y. (Yoshito) et al. | BASE | 2017

    Freier Zugriff