This study demonstrates a method for satellite remote sensing of surface soil moisture and the automated segmentation of the acquired imagery. The remote sensing method exploits the relationship between surface radiant temperature, vegetation cover, and surface soil moisture. The segmentation process employs a watershed algorithm applied within a morphological image pyramid. This multi-resolution approach compares favorably to fixed-resolution techniques both in computational cost and feature scalability. Applications of both the remote sensing method and image segmentation technique are demonstrated for a Landsat TM image of southwestern Oklahoma.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated segmentation of surface soil moisture from Landsat TM data


    Beteiligte:
    Bosworth, J. (Autor:in) / Koshimizu, T. (Autor:in) / Acton, S.T. (Autor:in)


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    779677 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated Segmentation of Surface Soil Moisture from Landsat TM Data

    Bosworth, J. / Koshimizu, T. / Acton, S. et al. | British Library Conference Proceedings | 1998


    Knowledge-based segmentation of Landsat images

    Ton, J. / Sticklen, J. / Jain, A.K. | Tema Archiv | 1991


    Design of a low-cost automated LANDSAT data analysis system

    Spann, G. W. / Hooper, N. J. / Faust, N. L. | NTRS | 1979


    Retrieval of Soil Moisture From AMSR Data

    Njoku, E. / Koike, T. / Paloscia, S. et al. | NTRS | 1999


    Quantification of soil mapping by digital analysis of Landsat data

    Kirschner, F. R. / Kaminsky, S. A. / Hinzel, E. J. et al. | NTRS | 1977