Intelligent visual surveillance for road vehicles is a key component for developing autonomous intelligent transportation systems. In this paper, a probabilistic model for prediction of traffic accidents using 3D model based vehicle tracking is proposed. Sample data including motion trajectories are first obtained by 3D model based vehicle tracking. A fuzzy self-organizing neural network algorithm is then applied to learn activity patterns from the sample trajectories. Vehicle activities are finally predicted by locating and matching each observed partial trajectory with the learned activity patterns, and the occurrence probability of a traffic accident is determined. Experiments with a model scene show the effectiveness of the proposed algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic accident prediction using vehicle tracking and trajectory analysis


    Beteiligte:
    Weiming Hu, (Autor:in) / Xuejuan Xiao, (Autor:in) / Dan Xie, (Autor:in) / Tieniu Tan, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    501114 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Accident Prediction Using Vehicle Tracking and Trajectory Analysis

    Hu, W. / Xiao, X. / Xie, D. et al. | British Library Conference Proceedings | 2003



    Traffic Vehicle Tracking and Trajectory Classification Using LSTM

    Konapalli, Kumar / Peddapothula, YaswanthPavan / Ghosh, Nirmalya | IEEE | 2024


    Traffic density adaptive vehicle trajectory prediction method

    LIU QIANG / LI ZILONG / ZHU JINGLONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Vehicle trajectory tracking prediction system and method

    WANG XINZHI / LIU JINBO / ZHANG JIAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff