Finding the optimal charging profile of an ultra-capacitor energy storage system during a regenerative braking event is the focus of this paper. After showing that resistive losses can be high during a high power regeneration event, we formulate the charging problem in an optimal control framework with the objective of maximizing the energy recuperated into the ultracapacitor bank while satisfying braking power demands. We employ Pontryagin's maximum principle to understand the necessary conditions the solution should satisfy and use numerical techniques to find such optimal solution(s). The result should provide more insight into the maximum achievable regeneration efficiency with ultracapacitors under different braking conditions and can also aid in sizing an ultracapacitor energy storage system and the associated power electronics device.
Optimal charging of ultracapacitors during regenerative braking
01.03.2012
941717 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Ultracapacitors + DC-DC Converter in a Regenerative Braking System
Online Contents | 2002
|Test Results with Regenerative Braking Based on Ultracapacitors and a
British Library Conference Proceedings | 2001
|