Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Genetic algorithms for vehicle routing problem in delivery system


    Beteiligte:
    Uchimura, K. (Autor:in) / Sakaguchi, H. (Autor:in) / Nakashima, T. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    243992 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Genetic Algorithms for Vehicle Routing Problem in Deliver System

    Uchimura, K. / Sakaguchi, H. / Nakashima, T. et al. | British Library Conference Proceedings | 1994


    SOLUTION TO VEHICLE ROUTING PROBLEM USING GENETIC ALGORITHMS

    Murthy, Vishnu / Arun Kumar, Manda V / Jaswanth, Kongara et al. | BASE | 2014

    Freier Zugriff


    Vehicle routing problem using genetic algorithms based on adjacency relations

    Uchimura,K. / Sakaguchi,H. / Kumamoto Univ.,Dep.of Electrical Engng.and Computer Science,JP | Kraftfahrwesen | 1995


    Vehicle Routing Problem Using Genetic Algorithms Based on Adjacency Relations

    Uchimura, K. / Sakaguchi, H. / IEEE et al. | British Library Conference Proceedings | 1995