This paper presents a reconfigurable architecture of a classification module based on the Adaboost algorithm. This architecture is used for object detection based on the attributes of color and texture. The Adaboost algorithm module uses the technique of decision trees as weak classifiers. This high-performance architecture processes up to 325 dense images of size 640 × 480 pixels, classifying all the structured objects contained on the image. Classification results are provided on an image with the same size. Both architectures, Adaboost algorithm and decision trees, are discussed and compared with several studies found in the literature. The conclusions and perspectives of the project are provided at the end of this document.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Design and Optimization of Real-Time Boosting for Image Interpretation Based on FPGA Architecture


    Beteiligte:


    Erscheinungsdatum :

    01.11.2011


    Format / Umfang :

    4943976 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Heterogeneous computer architecture for embedded real-time image interpretation [1957-29]

    Salinger, J. A. / SPIE | British Library Conference Proceedings | 1993


    Near real time image interpretation

    Lanckton, A.H. | Tema Archiv | 1977


    FPGA-Based Real-Time EMTP

    Chen, Yuan / Dinavahi, Venkata | BASE | 2009

    Freier Zugriff