This work deals with the tuning of an Extended Kalman Filter for sensorless control of induction motors for electrical traction in automotive. Assuming that the parameters of the induction motor-load model are known, Genetic Algorithms are used for obtaining the system noise covariance matrix, considering the measurement noise covariance matrix equal to the identity matrix. It is shown that only stator currents have to be acquired for reaching this objective, which is easy to accomplish using Hall-effect transducers. In fact, the Genetic Algorithm minimizes, with respect to the system covariance matrix, a suitable measure of the displacement between the stator currents experimentally acquired and those estimated by the Kalman filter. The proposed method is validated by experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tuning of Extended Kalman Filters for Sensorless Motion Control with Induction Motor




    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    401351 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Enhanced Sensorless Model Predictive Control of Induction Motor Based on Extended Kalman Filter

    Ahmed Ibrahim Soliman / Ahmed Farhan / Mohamed Abdelrahem et al. | BASE | 2020

    Freier Zugriff


    Real-time implementation of SVPWM-sensorless vector control of induction motor using an extended Kalman filter

    Mustapha Bendjima / Abdeldjebar Hazzab / Mansour Bechar et al. | BASE | 2023

    Freier Zugriff

    LEQG/LTR Controller Design with Extended Kalman Filter for Sensorless Induction Motor Servo Drive System

    Lin, J. / Wang, H. / Lin, M. et al. | British Library Conference Proceedings | 2000


    Auto-tuning extended Kalman filters to improve state estimation

    Boulkroune, Boulaid / Geebelen, Kurt / Wan, Jia et al. | IEEE | 2023