Autonomous vehicles require simple, real-time capable, robust, and accurate methods for predicting crash severity to ensure optimum occupant safety. Current restraint systems which are designed for specific scenarios and seating positions, need an upgrade (deploy in pre-crash) to cater to the challenges from new occupant postures such as sleeping, facing each other, etc. The deployment strategy during a collision depends mainly on the crash pulse and the occupant positions. This research paper investigates an inverse sigmoid approximation method for crash pulse prediction. The results highlight the potential for use in crash severity prediction with a mean absolute error of 0.17m/s and 3 g for the velocity and acceleration pulses, respectively. Moreover, it requires only three parameters for the prediction, illustrating the feasibility of real-time application in intelligent vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sigmoid-Based Method for Longitudinal Crash Pulse Prediction in Intelligent Vehicles


    Beteiligte:


    Erscheinungsdatum :

    17.12.2024


    Format / Umfang :

    772043 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Crash pulse prediction via inverse filtering

    Huang,M. / Jayachandran,R. / Ford Motor,US | Kraftfahrwesen | 2001


    Crash Pulse Prediction Via Inverse Filtering

    Huang, Matthew / Jayachandran, Raj | SAE Technical Papers | 2001


    LONGITUDINAL CRASH BEAM RECEIVER

    MAIER JENS | Europäisches Patentamt | 2018

    Freier Zugriff

    Longitudinal crash beam receiver

    MAIER JENS | Europäisches Patentamt | 2018

    Freier Zugriff

    Longitudinal crash beam receiver

    MAIER JENS | Europäisches Patentamt | 2020

    Freier Zugriff