Due to the unreliable nature of wireless links, sensor nodes frequently encounter degraded performance or lack of connection. This paper provides a real-time status monitoring and channel error diagnosis method in a wireless sensor network. It uses a poll and echo procedure to efficiently collect some physical layer and link layer statistics from both transmitter side and receiver side. A machine learning approach (k-nearest neighbor) is used for failure isolation. Our scheme involves learning the normal and anomalous behavior of the network via continued observation, and classifying future events and observations as normal or different classes of errors based on past experiences. With implementation on IEEE 802.15.4 SoC, our experimental results show that the proposed framework can diagnose the major wireless transmission errors with high accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning Based Channel Error Diagnostics in Wireless Sensor Networks


    Beteiligte:
    Yi, Su (Autor:in) / Wang, Hao (Autor:in) / Tian, Jun (Autor:in) / Xue, Wenqian (Autor:in) / Wang, Leifei (Autor:in) / Fan, Xiaojing (Autor:in) / Matsukura, Ryuichi (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    442690 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model based error correction for wireless sensor networks

    Mukhopadhyay, S. / Panigrahi, D. / Dey, S. | IEEE | 2004


    Random forests for industrial device functioning diagnostics using wireless sensor networks

    Elghazel, Wiem / Medjaher, Kamal / Zerhouni, Noureddine et al. | IEEE | 2015



    Low power channel coding for Wireless Sensor Networks

    Abughalieh, N / Steenhaut, K / Nowé, A | IEEE | 2010


    Machine learning applications for shock train diagnostics

    Chin, Jared / Gamba, Mirko | AIAA | 2021