We introduce a deep reinforcement learning framework that enables the generation of trained policy networks (agents) that incorporate local knowledge of current fields to provide energy-minimizing guidance for unmanned underwater vehicles (UUVs). Agents trained using this framework are capable of generating heading, depth, and speed commands that yield nearly-optimal, minimum-energy transits through spatially varying current fields. Numerical simulations in two and three spatial dimensions demonstrate that the energy cost of transits executed under the guidance of a trained agent are better than dead-reckoning and approach known optimal performance in a set of test scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning for Improved Guidance and Power Management of Unmanned Underwater Vehicles


    Beteiligte:
    Greeley, Brian (Autor:in) / Brandman, Jeremy (Autor:in) / Olson, Colin (Autor:in)


    Erscheinungsdatum :

    25.09.2023


    Format / Umfang :

    585115 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature-Related Acoustic Guidance of Unmanned Underwater Vehicles

    Caccia, M. / International Federation of Automatic Control | British Library Conference Proceedings | 2002


    Modeling, Identification, Control and Guidance of Unmanned Underwater Vehicles

    Caccia, M. / Veruggio, G. | British Library Conference Proceedings | 2001


    Motion control of unmanned underwater vehicles via deep imitation reinforcement learning algorithm

    Chu, Zhenzhong / Sun, Bo / Zhu, Daqi et al. | Wiley | 2020

    Freier Zugriff

    Motion control of unmanned underwater vehicles via deep imitation reinforcement learning algorithm

    Chu, Zhenzhong / Sun, Bo / Zhu, Daqi et al. | IET | 2020

    Freier Zugriff

    A review of guidance laws applicable to unmanned underwater vehicles

    Naeem, W. / Sutton, R. / Ahmad, S.M. et al. | Tema Archiv | 2003