Singular value decomposition (SVD) can realize denoising without relying on spectral characteristics. It is more useful for small scale denoising. Bispectrum can effectively inhibit the interference of non Gaussian noise, which makes the signal feature extraction convenient. The two methods are combined in this research. In the beginning, the vibration signals of engine crankshaft bearings go through SVD-based denoising, and then the high-order spectral theory is adopted to get the bispectrum of the signals after denoising. In the end, the frequency band of the fault crankshaft bearings signal is extracted by searching the whole 2-D frequency field, and favorable diagnosing result is obtained.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using Singular value decomposition and high order spectrum for Bearings Fault Diagnosis


    Beteiligte:
    Huimin Zhao (Autor:in) / Hong Shen (Autor:in) / Yu Fu (Autor:in) / Guowei Wang (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    759288 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The Robust Fault Diagnosis Based on the Singular Value Decomposition

    Hu, C. H. / Xu, H. L. / Qing, W. et al. | British Library Conference Proceedings | 1996


    The Robust Fault Diagnosis Based on the Singular Value Decomposition

    Hu, C. H. / Xu, H. L. / Qing, W. | British Library Online Contents | 1996


    Generation of Aerodynamics Databases Using High-Order Singular Value Decomposition

    Lorente, L. S. / Vega, J. M. / Velazquez, A. | AIAA | 2008