The paper describes a segmentation technique that well fits to an appearance-based self-localisation. In an appearance-based approach robot positioning is performed without using explicit object models. The choice of the representation of image appearances is fundamental. We use image-domain features, as opposed to interpreted characteristics of the scene, and we adopt feature vectors including both the chromatic attributes of colour sets and their mutual spatial relationships. To obtain the colour sets we perform image segmentation by autothresholding the colour histograms and taking into account what the results are addressed to. The experimental results indicate that the method performs well for a variety of environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Image segmentation for appearance-based self-localisation


    Beteiligte:
    Zingaretti, P. (Autor:in) / Bossoletti, L. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    1056674 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image Segmentation for Appearance-Based Self-Localisation

    Zingaretti, P. / Bossoletti, L. / IEEE | British Library Conference Proceedings | 2001


    Vision-only localisation under extreme appearance change

    Linegar, C | BASE | 2017

    Freier Zugriff

    Appearance‐based approach to hybrid metric‐topological simultaneous localisation and mapping

    Fernández, Lorenzo / Payá, Luis / Reinoso, Oscar et al. | Wiley | 2014

    Freier Zugriff

    Appearance-based approach to hybrid metric-topological simultaneous localisation and mapping

    Fernández, Lorenzo / Payá, Luis / Reinoso, Oscar et al. | IET | 2014

    Freier Zugriff

    Optical flow localisation and appearance mapping (OFLAAM) for long-term navigation

    Pastor-Moreno, Daniel / Shin, Hyo-Sang / Waldock, Antony | IEEE | 2015