We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL (Minimum Description Length) criterion using the variational principle. We show that existing techniques in early vision such as, snake/balloon models, region growing, and Bayes/MDL are addressing different aspects of the same problem and they can be unified within a common statistical framework which combines their advantages. We analyze how to optimize the precision of the resulting boundary location by studying the statistical properties of the region competition algorithm and discuss what are good initial conditions for the algorithm. Our method is generalized to color and texture segmentation and is demonstrated on grey level images, color images and texture images.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation


    Beteiligte:
    Zhu, S.C. (Autor:in) / Lee, T.S. (Autor:in) / Yuille, A.L. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    828997 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Region Competition: Unifying Snakes, Region Growing, Energy/Bayes/MDL for Multi-band Image Segmentation

    Zhu, S. / Yuille, A. / IEEE Computer Society et al. | British Library Conference Proceedings | 1995


    Automatic seeded region growing for color image segmentation

    Shih, F. Y. / Cheng, S. | British Library Online Contents | 2005


    Hybrid image segmentation using watersheds and adaptive region growing

    Liu, M. G. / Jiang, J. / Hou, C. H. et al. | British Library Conference Proceedings | 2003


    Fast image region growing

    Chang, Y.-L. / Li, X. | British Library Online Contents | 1995


    Robust topology-adaptive snakes for image segmentation

    Ji, L. / Yan, H. | British Library Online Contents | 2002