Although pre-built LiDAR maps have been widely used for location estimation, the high maintenance cost of pre-built maps hinders their expansion in practical application. Lightweight maps with global consistency and extensive coverage, such as OpenStreetMap (OSM), provide a low-cost potential alternative for prior reference. However, OSM exhibits significant differences in precision and structure with on-board perception, leading to incompatibility and poor performance with the existing descriptor matching method. Thus, this paper proposes a planar descriptor based on building boundary directions that is tailored for OSM-perception unification. Based on the proposed descriptor, OSM can be transformed into a prior map with the potential to replace pre-built maps, suitable for location estimation in urban scenes. To evaluate the effectiveness of replacing pre-built LiDAR maps, we conducted experiments in the urban environment sequences of KITTI. The results indicate that the proposed method achieves the best performance on location estimation accuracy utilizing OSM compared to other feature descriptors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Boundary Directional Feature Descriptor for LiDAR-OpenStreetMap Matching in Urban Scenarios


    Beteiligte:
    Li, Zexing (Autor:in) / Wang, Yafei (Autor:in) / Zhang, Ruitao (Autor:in) / Li, Ruoyao (Autor:in) / Zhang, Yichen (Autor:in) / Wu, Mingyu (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    4464849 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Map Matching and Lanes Number Estimation with Openstreetmap

    Kasmi, Abderrahim / Denis, Dieumet / Aufrere, Romuald et al. | IEEE | 2018


    OpenStreetMap-Based Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance

    Munoz-Banon, Miguel Angel / Velasco-Sanchez, Edison / Candelas, Francisco A. et al. | IEEE | 2022


    Efficient Tree-Based Feature Descriptor and Matching Algorithm

    Fowers, Spencer / Desai, Alok / Lee, D. J. et al. | AIAA | 2014


    OpenStreetMap for traffic simulation

    Zilske, Michael / Neumann, Andreas / Nagel, Kai | DataCite | 2011

    Freier Zugriff

    Robust Wide Baseline Point Matching Based on Scale Invariant Feature Descriptor

    Sicong, Y. / Qing, W. / Rongchun, Z. | British Library Online Contents | 2009