The Gaussian kernel has played a central role in multi-scale methods for feature extraction and matching. In this paper, a method for shaping the filter using the local image structure is presented. We propose an optimization formulation that densely estimates the filter's affine parameters by minimizing an objective constructed from differential feature responses and seek iterative, approximate solutions. A consequence of shaping the filters is affine invariance of the differential feature vector and it is shown that the shaped responses improve recognition performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Shaping receptive fields for affine invariance


    Beteiligte:
    Ravela, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    323674 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Shaping Receptive Fields for Affine Invariance

    Ravela, S. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Coplanar circles, quasi-affine invariance and calibration

    Wu, Y. / Li, X. / Wu, F. et al. | British Library Online Contents | 2006


    Turning a blind eye to cortical receptive fields

    Chapman, B. / Stone, L. S. | NTRS | 1996


    Linear Neural Circuitry Model for Visual Receptive Fields

    Mahmoodi, S. | British Library Online Contents | 2016


    Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields

    Lindeberg, T. | British Library Online Contents | 2016