4D mmWave radar sensors are suitable for roadside perception in city-scale Intelligent Transportation Systems (ITS) due to their long sensing range, weatherproof functionality, simple mechanical design, and low manufacturing cost. In this work, we investigate radar-based ITS for scalable traffic analysis. Localization of these radar sensors at city scale is a fundamental task in ITS. For flexible sensor setups, it requires even more effort. To address this task, we propose a self-localization approach that matches two descriptions of the "road": the one from the geometry of the motion trajectories of cumulatively observed vehicles, and the other one from the aerial laser scan. An Iterative Closest Point (ICP) algorithm is used to register the motion trajectory in the road section of the laser scan. The resulting estimate of the transformation matrix represents the sensor pose in a global reference frame. We evaluate the results and show that the method outperforms other map-based radar localization methods, especially for the orientation estimation. Beyond the localization result, we project radar sensor data onto a city-scale laser scan and generate a scalable occupancy heat map as a traffic analysis tool. This is demonstrated using two radar sensors monitoring an urban area in the real world.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scalable Radar-based Roadside Perception: Self-localization and Occupancy Heat Map for Traffic Analysis


    Beteiligte:
    Han, Longfei (Autor:in) / Xu, Qiuyu (Autor:in) / Kefferputz, Klaus (Autor:in) / Lu, Ying (Autor:in) / Elger, Gordon (Autor:in) / Beyerer, Jurgen (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    3465043 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Applying Extended Object Tracking for Self-Localization of Roadside Radar Sensors

    Han, Longfei / Xu, Qiuyu / Kefferputz, Klaus et al. | IEEE | 2024


    Method for evaluating traffic participant perception capability based on roadside perception system

    MA PANKE / ZHANG YI / CHANG SIYANG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic incident detection method for roadside millimeter wave radar

    CHEN RUI / SHI HAIXIN / HU XIAOPENG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    VEHICLE PERCEPTION OF ROADSIDE SHELTERS

    NG CHEUK-HUNG / TRAN DAVID / LEWIS WILLIE | Europäisches Patentamt | 2024

    Freier Zugriff