Accurate trajectory prediction is crucial for the safe and efficient operation of autonomous vehicles. The growing popularity of deep learning has led to the development of numerous methods for trajectory prediction. While deter-ministic deep learning models have been widely used, deep generative models have gained popularity as they learn data distributions from training data and account for trajectory uncertainties. In this study, we propose EquiDiff, a deep generative model for predicting future vehicle trajectories. EquiDiff is based on the conditional diffusion model, which generates future trajectories by incorporating historical information and random Gaussian noise. The backbone model of EquiDiff is an SO(2)-equivariant transformer that fully utilizes the geometric properties of location coordinates. In addition, we employ Recurrent Neural Networks and Graph Attention Networks to extract social interactions from historical trajectories. To evaluate the performance of EquiDiff, we conduct extensive experiments on the NGSIM dataset. Our results demonstrate that EquiDiff outperforms other baseline models in shortterm prediction, but has slightly higher errors for long-term prediction. Furthermore, we conduct an ablation study to investigate the contribution of each component of EquiDiff to the prediction accuracy. Additionally, we present a visualization of the generation process of our diffusion model, providing insights into the uncertainty of the prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory Prediction


    Beteiligte:
    Chen, Kehua (Autor:in) / Chen, Xianda (Autor:in) / Yu, Zihan (Autor:in) / Zhu, Meixin (Autor:in) / Yang, Hai (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1428112 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    EQUIVARIANT TRAJECTORY OPTIMIZATION WITH DIFFUSION MODELS

    BREHMER JOHANN HINRICH / BOSE AVISHEK / DE HAAN PIM et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Conditional agent trajectory prediction

    MAHJOURIAN REZA / DOWNEY CARLTON MACDONALD / SAPP BENJAMIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    CONDITIONAL AGENT TRAJECTORY PREDICTION

    MAHJOURIAN REZA / DOWNEY CARLTON MACDONALD / SAPP BENJAMIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction

    You, Junwei / Gan, Rui / Tang, Weizhe et al. | ArXiv | 2024

    Freier Zugriff