We introduce a geometric hashing strategy to recognize CAD models from an organized hierarchy. Unlike most prior work in hashing using graph theoretic models, this work is a step closer to the classical, point based geometric hashing scheme. The geometric hashing strategy is used along with the hierarchical organization strategy defined by K. Sengupta and K.L. Boyer (1995). The combination of these two concepts can potentially reduce the recognition time considerably, especially versus the normal graph theoretic ideas, while retaining all of their benefits. We also present an error analysis of the hashing scheme considering the sensor noise and the scene clutter. Experiments with a CAD modelbase and both synthetic and real images indicate the potential of this scheme for fast recognition from large modelbases.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using geometric hashing with information theoretic clustering for fast recognition from a large CAD modelbase


    Beteiligte:
    Sengupta, K. (Autor:in) / Boyer, K.L. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    624675 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Using Geometric Hashing with Information Theoretic Clustering for Fast Recognition From a Large CAD Modelbase

    Sengupta, K. / Boyer, K. L. / IEEE; Computer Society; Technical Committee for Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1995



    Geometric hashing with attributed features

    Jyh-Jong Liu / Hummel, R. | IEEE | 1994


    Learning geometric hashing functions for model-based object recognition

    Bebis, G. / Georgiopoulos, M. / da Vitoria Lobo, N. | IEEE | 1995


    Learning Geometric Hashing Functions for Model-Based Object Recognition

    Bebis, G. / Georgiopoulos, M. / Da Vitoria Lobo, N. et al. | British Library Conference Proceedings | 1995