Moving objects have special importance for Autonomous Driving tasks. Detecting moving objects can be posed as Moving Object Segmentation, by segmenting the object pixels, or Moving Object Detection, by generating a bounding box for the moving targets. In this paper, we present a Multi-Task Learning architecture, based on Transformers, to jointly perform both tasks through one network. Due to the importance of the motion features to the task, the whole setup is based on a Spatio-Temporal aggregation. We evaluate the performance of the individual tasks architecture versus the MTL setup, both with early shared encoders, and late shared encoder-decoder transformers. For the latter, we present a novel joint tasks query decoder transformer, that enables us to have tasks dedicated heads out of the shared model. To evaluate our approach, we use the KITTI MOD [23] data set. Results show 1.5% mAP improvement for Moving Object Detection, and 2% IoU improvement for Moving Object Segmentation, over the individual tasks networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatio-Temporal Multi-Task Learning Transformer for Joint Moving Object Detection and Segmentation


    Beteiligte:
    Mohamed, Eslam (Autor:in) / Sallab, Ahmad El (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    462410 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Spatio-Temporal Video Analysis System for Object Segmentation

    Xia, J. / Wang, Y. / IEEE | British Library Conference Proceedings | 2003



    Tracking moving objects as spatio-temporal boundary detection

    Mitiche, A. / Feghali, R. / Mansouri, A. | IEEE | 2002


    Tracking Moving Objects as Spatio-Temporal Boundary Detection

    Mitiche, A. / Feghali, R. / Mansouri, A. et al. | British Library Conference Proceedings | 2002