In this paper, we tackle the newly introduced panoptic segmentation task. Panoptic segmentation unifies semantic and instance segmentation and leverages the capabilities of these complementary tasks by providing pixel and instance level classification. Current state-of-the-art approaches employ either separate networks for each task or a single network for both task and post processing heuristics fuse the outputs into the final panoptic segmentation. Instead, our approach solves all three tasks including panoptic segmentation with an end-to-end learnable fully convolutional neural network. We build upon the Mask R-CNN framework with a shared backbone and individual network heads for each task. Our semantic segmentation head uses multi-scale information from the Feature Pyramid Network, while the panoptic head learns to fuse the semantic segmentation logits with variable number of instance segmentation logits. Moreover, the panoptic head refines the outputs of the network, improving the semantic segmentation results. Experimental results on the challenging Cityscapes dataset demonstrate that the proposed solution achieves significant improvements for both panoptic segmentation and semantic segmentation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-task Network for Panoptic Segmentation in Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    2859039 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MtpNet: Multi-Task Panoptic Driving Perception Network

    Li, Zheng / Yuan, Xiaohui / Sun, Bifan et al. | IEEE | 2025



    REAL-TIME PANOPTIC SEGMENTATION WITH PROTOTYPE MASKS FOR AUTOMATED DRIVING

    Petrovai, Andra / Nedevschi, Sergiu | British Library Conference Proceedings | 2020


    Panoptic Segmentation from Stitched Panoramic View for Automated Driving

    Kinzig, Christian / Miller, Henning / Lauer, Martin et al. | IEEE | 2024


    Depth-Aware Panoptic Segmentation with Mask Transformers and Panoptic Bins for Autonomous Driving

    Petrovai, Andra / Miclea, Vlad-Cristian / Nedevschi, Sergiu | IEEE | 2024