This paper presents a novel CNN-based approach for synthesizing high-resolution LiDAR point cloud data. Our approach generates semantically and perceptually realistic results with guidance from specialized loss-functions. First, we utilize a modified per-point loss that addresses missing LiDAR point measurements. Second, we align the quality of our generated output with real-world sensor data by applying a perceptual loss. In large-scale experiments on real-world datasets, we evaluate both the geometric accuracy and semantic segmentation performance using our generated data vs. ground truth. In a mean opinion score testing we further assess the perceptual quality of our generated point clouds. Our results demonstrate a significant quantitative and qualitative improvement in both geometry and semantics over traditional non CNN-based upsampling methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CNN-based synthesis of realistic high-resolution LiDAR data


    Beteiligte:


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    1350249 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MARSIM: A light-weight point-realistic simulator for LiDAR-based UAVs

    Kong, Fanze / Liu, Xiyuan / Tang, Benxu et al. | ArXiv | 2022

    Freier Zugriff

    Synthetic vision helicopter flights using high resolution LIDAR terrain data

    Sindlinger, A. / Meuter, M. / Barraci, N. et al. | SPIE | 2006


    Autoregistration of high-resolution satellite imagery using LIDAR intensity data

    Lee, Jaebin / Lee, Changno / Yu, Kiyun | Springer Verlag | 2011


    High Resolution LiDAR Based on Single Chip SPAD Array

    Yanai, Kenichi / Azuma, Kenta / Ozaki, Noriyuki et al. | SAE Technical Papers | 2019