For single-target multisensor systems, two fusion methods are presented for distributed recursive state estimation of dynamic systems without knowledge of noise covariances. The estimator at every local sensor embeds the dynamics and the forgetting factor into the recursive least squares (RLS) method to remedy the lack of knowledge of noise statistics, developed before as the extended forgetting factor recursive least squares (EFRLS) estimator. It is proved that the two fusion methods are equivalent to the centralized EFRLS that uses all measurements from local sensors directly and their good performance is shown by simulation examples.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fusion of distributed extended forgetting factor RLS state estimators


    Beteiligte:
    Yunmin Zhu (Autor:in) / Keshu Zhang (Autor:in) / Li, X.R. (Autor:in)


    Erscheinungsdatum :

    01.04.2008


    Format / Umfang :

    2302547 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch