Data association, the problem of reasoning over correspondence between targets and measurements, is a fundamental problem in tracking. This paper presents a graphical model formulation of data association and applies an approximate inference method, belief propagation (BP), to obtain estimates of marginal association probabilities. We prove that BP is guaranteed to converge, and bound the number of iterations necessary. Experiments reveal a favourable comparison to prior methods in terms of accuracy and computational complexity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Approximate evaluation of marginal association probabilities with belief propagation


    Beteiligte:
    Williams, Jason (Autor:in) / Lau, Roslyn (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    1837694 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Nonparametric belief propagation

    Sudderth, E.B. / Ihler, A.T. / Freeman, W.T. et al. | IEEE | 2003


    Nonparametric Belief Propagation

    Sudderth, E. / Ihler, A. / Freeman, W. et al. | British Library Conference Proceedings | 2003


    Marginal cost congestion pricing under approximate equilibrium conditions

    Jansson, Mattias, 1973- | DSpace@MIT | 1998

    Freier Zugriff

    A Comparison of JPDA and Belief Propagation for Data Association in SSA

    Rutten, Mark | British Library Conference Proceedings | 2014