We propose and study a data-driven framework for identifying traffic congestion functions (numerical relationships between observations of traffic variables) at global scale and segment-level granularity. In contrast to methods that estimate a separate set of parameters for each roadway, ours learns a single black-box function over all roadways in a metropolitan area. First, we pool traffic data from all segments into one dataset, combining static attributes with dynamic time-dependent features. Second, we train a feed-forward neural network on this dataset, which we can then use on any segment in the area. We evaluate how well our framework identifies congestion functions on observed segments and how it generalizes to unobserved segments and predicts segment attributes on a large dataset covering multiple cities worldwide. For identification error on observed segments, our single data-driven congestion function compares favorably to segment-specific model-based functions on highway roads, but has room to improve on arterial roads. For generalization, our approach shows strong performance across cities and road types: both on unobserved segments in the same city and on zero-shot transfer learning between cities. Finally, for predicting segment attributes, we find that our approach can approximate critical densities for individual segments using their static properties.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scalable Learning of Segment-Level Traffic Congestion Functions


    Beteiligte:


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    1231139 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic congestion road segment prompting system

    WANG YANDI | Europäisches Patentamt | 2015

    Freier Zugriff

    A zone-based traffic assignment algorithm for scalable congestion reduction

    Taylor Cox / Parimala Thulasiraman | DOAJ | 2017

    Freier Zugriff

    TRAFFIC CONGESTION DETECTION DEVICE, TRAFFIC CONGESTION DETECTION SYSTEM, AND TRAFFIC CONGESTION DETECTION METHOD

    ESHITA NAOHIKO / MORIGUCHI TAKUO / TOKUUME SHINYA et al. | Europäisches Patentamt | 2022

    Freier Zugriff


    Traffic congestion

    Marks, W.G. | Engineering Index Backfile | 1937