Air pollution in urban environments, particularly on city highways, poses a significant threat to public health and the environment. Traffic congestion is the leading cause to air pollution in today's world. This study investigates the potential of machine learning and artificial intelligence (AI) for improving traffic management and reducing Air Pollution. This research paper investigates the traffic volumes in the city highways and introduces a system which will adjust the traffic signal timing based on traffic predictions and Air Quality Index (AQI) data. The results provide insights into the potential of machine learning for traffic prediction and the use of AI for optimizing green light control. With the help of these techniques traffic management systems could potentially improve traffic flow reducing congestion, and enhancing urban air.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Minimizing Air pollution using Artificial Intelligence


    Beteiligte:
    Gupta, Rohan (Autor:in) / Manna, Ambarish (Autor:in) / Sharma, Himanshu (Autor:in) / Pandit, Priyansh (Autor:in) / Pan, Sandip (Autor:in)


    Erscheinungsdatum :

    29.08.2024


    Format / Umfang :

    737580 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Marine pollution diagnosis and forecasting system using artificial intelligence

    BAE JAE HWAN | Europäisches Patentamt | 2021

    Freier Zugriff

    Minimizing noise and environment pollution

    Schmidt, Trixy | Online Contents | 2010


    Artificial Intelligence

    Duan, Franklin Li | Springer Verlag | 2023


    Artificial Intelligence

    Online Contents | 1995