Platform-based large-scale journey planning of autonomous vehicles and context-sensitive route planning applications require new scalable approaches in order to work within an on-demand mobility service. In this work we present and test a machine learning-based approach for distance-based roundtrip planning in a Traveling Salesman Problem (TSP) setting. We introduce our applied Distance-Based Pointer Network (DBPN) algorithm which solves mini-batches of multiple symmetric and asymmetric 2D Euclidean TSPs. We provide our algorithm and test results for symmetric and asymmetric TSP distances, as present in real road and traffic networks. Subsequently, we compare our results with an industry standard routing solver OR-Tools. Here, we focus on solving comparably small TSP instances which commonly occur on our platform-based service. Our results show that compared to the State-of-the-Art methods such as the Coordinate-Based Pointer Network (CBPN) and OR-Tools, our approach solves asymmetric TSPs which cannot be solved by the CBPN approach. The results furthermore show that our approach achieves near-optimal results by a 5.9% mean absolute percentage error, compared to the OR-Tools solution. By solving 1000 TSPs, we show that our DBPN approach is approximately 27 times faster than the OR-Tools solver.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distance-Based Neural Combinatorial Optimization for Context-based Route Planning


    Beteiligte:
    Hamzehi, Sascha (Autor:in) / Bogenberger, Klaus (Autor:in) / Kaltenhauser, Bernd (Autor:in) / Tian, Jilei (Autor:in) / Chin, Alvin (Autor:in) / Cao, Yang (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    4916011 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Context-Aware Bicycle Route Planning

    Gavalas, Damianos / Gerodimos, Theofanis / Zaroliagis, Christos | Springer Verlag | 2023


    Travel Route Planning Based on Intelligent Optimization Algorithms

    Ye, Hankun / Zhang, Mingyu / Lin, Guowei et al. | IEEE | 2024


    Route planning and optimization

    Rousseau,J.-M. / Roy,S. / Zavoli,W.B. et al. | Kraftfahrwesen | 1989


    Context-Aware Route Planning for Automated Warehouses

    Hvězda, Jakub / Rybecký, Tomáš / Kulich, Miroslav et al. | BASE | 2018

    Freier Zugriff

    Context-Aware Route Planning for Automated Warehouses

    Hvezda, Jakub / Rybecky, Tomas / Kulich, Miroslav et al. | IEEE | 2018