Deep Reinforcement Learning (DRL) algorithm provides an effective and powerful way for the computer learning to make decisions according to what the computer sees, the most famous application of DRL is training the computer to play computer games, such as the computer Go and Atari Games. In this paper, we present that the DRL can used to improve the classical PID controller by training an adaptive PID controller with its parameters change according to the changing state, we name our new controller as DRPID, the deep reinforcement learning algorithm that we used to train the PID controller in this paper is deep deterministic policy gradient, which is very suitable to solve continue action control problem. We test our DRPID algorithm by training it to control an inverted pendulum in the OpenAI gym simulation environment, and we found DRPID controller works very well, outperforms the common PID controller with fixed parameters, by a great margin.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improve PID controller through reinforcement learning


    Beteiligte:
    Qin, Yunxiao (Autor:in) / Zhang, Weiguo (Autor:in) / Shi, Jingping (Autor:in) / Liu, Jinglong (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    414922 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DEVICE AND METHOD TO IMPROVE REINFORCEMENT LEARNING

    SOFFAIR NITSAN / AVNER ORLY / DI CASTRO DOTAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Interpreting data of reinforcement learning agent controller

    NAGESHRAO SUBRAMANYA / JALES COSTA BRUNO SIELLY / FILEV DIMITAR PETROV | Europäisches Patentamt | 2023

    Freier Zugriff

    INTERPRETING DATA OF REINFORCEMENT LEARNING AGENT CONTROLLER

    NAGESHRAO SUBRAMANYA / JALES COSTA BRUNO SIELLY / FILEV DIMITAR PETROV | Europäisches Patentamt | 2020

    Freier Zugriff

    Reinforcement learning to improve 4-finger-gripper manipulation

    Ojer de Andrés, Marco | BASE | 2017

    Freier Zugriff

    Hybrid Reinforcement Learning based controller for autonomous navigation

    Joglekar, Ajinkya / Krovi, Venkat / Brudnak, Mark et al. | IEEE | 2022