The global positioning system (GPS) equations are usually solved with an application of Newton's method or a variant thereof: Xn+1 = xn + H-1(t - f(xn)). (1) Here x is a vector comprising the user position coordinates together with clock offset, t is a vector of tour pseudorange measurements, and H is a measurement matrix of partial derivatives H = fx· In fact the first fix of a Kalman filter provides a solution of this type. If more than four pseudoranges are available for extended batch processing, H-1 may be replaced by a generalized inverse (HTWH)-1HTW, where W is a positive definite weighting matrix (usually taken to be the inverse of the measurement covariance matrix). This paper introduces a new method of solution that is algebraic and noniterative in nature, computationally efficient and numerically stable, admits extended batch processing, improves accuracy in bad geometric dilution of precision (GDOP) situations, and allows a "cold start" in deep space applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Algebraic Solution of the GPS Equations


    Beteiligte:


    Erscheinungsdatum :

    01.01.1985


    Format / Umfang :

    793995 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Numerical Solution of Random Algebraic Equations

    Sargent, J. / Sathananthan, S. | British Library Conference Proceedings | 1997


    Appendix E: Solution of Algebraic Equations

    Dixon, John C. | Wiley | 2007


    Benchmarks for the Numerical Solution of Algebraic Riccati Equations

    Benner, P. / Laub, A. J. / Mehrmann, V. | British Library Online Contents | 1997



    Implicit Solution of Preconditioned NavierStokes Equations Using Algebraic Multigrid

    Jonathan M. Weiss / Joseph P. Maruszewski / Wayne A. Smith | AIAA | 1999