Forming an efficient feature space for classification problems is a grand challenge in pattern recognition. Many optimization algorithms are adopted to do feature selection, but these algorithms do searching in multi-dimensions space and always cannot get the optimal feature subset. In this paper, a feature selection method with Particle Swarm Optimization based one-dimension searching is proposed to improve the classification performance. Experimental results show that the proposed method can do feature selection more effectively than the compared method and get much higher classification accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effective feature selection with Particle Swarm Optimization based one-dimension searching


    Beteiligte:
    Jun Wang, (Autor:in) / Yan Zhao, (Autor:in) / Ping Liu, (Autor:in)


    Erscheinungsdatum :

    01.06.2010


    Format / Umfang :

    581462 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AEB algorithm failure scene searching method based on particle swarm optimization

    CAI JINKANG / DENG WEIWEN / DING JUAN | Europäisches Patentamt | 2022

    Freier Zugriff

    Feature Selection for Web Page Classification Using Swarm Optimization

    B. Leela Devi / A. Sankar | BASE | 2015

    Freier Zugriff



    Particle Swarm Model Selection

    HUGO JAIR ESCALANTE BALDERAS / MANUEL MONTES Y GOMEZ / LUIS ENRIQUE SUCAR SUCCAR | BASE | 2009

    Freier Zugriff