An automated approach to finding main roads in aerial images is presented. The approach is to build geometric-probabilistic models for road image generation. Gibbs distributions are used. Then, given an image, roads are found by MAP (maximum aposteriori probability) estimation. The MAP estimation is handled by partitioning an image into windows, realizing the estimation in each window through the use of dynamic programming, and then, starting with the windows containing high confidence estimates, using dynamic programming again to obtain optimal global estimates of the roads present. The approach is model-based from the outset. It produces two boundaries for each road, or four boundaries when a midroad barrier is present.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation


    Beteiligte:
    Barzohar, M. (Autor:in) / Cooper, D.B. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    605233 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic extraction of main roads using aerial images

    Silva, C. R. / Centeno, J. A. | British Library Online Contents | 2010


    Finding roads in images

    Greenway, Phil / Mackeown, William P. | SPIE | 1995


    Automatic extraction of roads from aerial images based on scale space and snakes

    Laptev, I. / Mayer, H. / Lindeberg, T. et al. | British Library Online Contents | 2000


    Finding Road Seeds in Aerial Images

    Zlotnick, A. / Carnine, P. D. | British Library Online Contents | 1993


    Queensland main roads

    Engineering Index Backfile | 1939