In recent years kernel principal component analysis (kernel PCA) has gained much attention because of its ability to capture nonlinear image features, which are particularly important for encoding image structure. Boosting has been established as a powerful learning algorithm that can be used for feature selection. In this paper we present a novel framework for object class detection that combines the feature reduction and feature selection abilities of kernel PCA and AdaBoost respectively. The classifier obtained in this way is able to handle change in object appearance, illumination conditions, and surrounding clutter. A nonlinear subspace is learned for positive and negative object classes using Kernel PCA. Features are derived by projecting example images onto the learned subspaces. Base learners are modeled using Bayes classifier. AdaBoost is then employed to discover the features that are most relevant for the object detection task at hand. The proposed method has been successfully tested on wide range of object classes (cars, air-planes, pedestrians, motorcycles, etc) using standard data sets and has shown remarkable performance. Using a small training set, a classifier learned in this way was able to generalize the intra-class variation while still maintaining high detection rate. In most object categories we achieved detection rates of above 95% with minimal false alarm rates. We demonstrate the effectiveness of our approach in terms of absolute performance parameters and comparative performance against current state of the art approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A supervised learning framework for generic object detection in images


    Beteiligte:
    Saad Ali, (Autor:in) / Mubarak Shah, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    758394 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Supervised Learning Framework for Generic Object Detection in Images

    Ali, S. / Shah, M. / IEEE | British Library Conference Proceedings | 2005


    Weakly Supervised Localization and Learning with Generic Knowledge

    Deselaers, T. / Alexe, B. / Ferrari, V. | British Library Online Contents | 2012



    A Framework for Generic Object Recognition with Bayesian Networks

    Liang, J. M. / Liang, J. Q. / Ren, Q. L. | British Library Online Contents | 2005


    Object Detection in Aerial Imagery Based on Enhanced Semi-Supervised Learning

    Yao, J. / Zhang, Z. / IEEE | British Library Conference Proceedings | 2005