The issue of recognizing 3D elongated objects from 2D intensity images is addressed. A tube model, locally similar to generalized cones, is developed for the class of elongated objects. A recognition strategy that combines 2D contour properties and surface shading information is used to exploit the power of the 3D model. Reliable contours provide constraints for localizing the objects of interest. The theory of optimal filters is adopted in verifying the shading of hypothesized objects. Object recognition is achieved through optimizing the signal-to-noise response with respect to model parameters. A sweeping operation is proposed as a further stage of identifying objects so that the overall performance of the system does not heavily rely on the quality of local feature detection.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generalized tube model: recognizing 3D elongated objects from 2D intensity images


    Beteiligte:
    Huang, Q. (Autor:in) / Stockman, G.C. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    522687 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Recognizing occluded objects in SAR images

    Jones, G. / Bhanu, B. | IEEE | 2001


    Recognizing occluded objects in SAR images

    Jones, G. III / Bhanu, B. | Tema Archiv | 2001



    LIFTING SYSTEM FOR ELONGATED OBJECTS

    AHTONEN KAUKO | Europäisches Patentamt | 2019

    Freier Zugriff

    Lifting system for elongated objects

    AHTONEN KAUKO | Europäisches Patentamt | 2021

    Freier Zugriff