With the continuous increase in the number of space objects and limitations imposed by observation conditions, a significant number of short-arc observations, namely, tracklets, are generated during the space surveillance process, making it challenging to determine the orbit using a single tracklet. Traditional tracklet association methods can establish associations between tracklets, thus enabling the utilization of multiple associated tracklets for orbit determination, but often overlook spacecraft maneuvers, posing challenges in dealing with tracklets after maneuvers. This article proposes a joint estimation method for associating maneuvered tracklets and estimating maneuver parameters to address the association issue of tracklets before and after single-impulse maneuvers. Accurate association of maneuvered tracklets is achieved by inversely inferring the maneuvering process and estimating maneuver parameters. Simulation results validate the effectiveness of this method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tracklet Association for Geosynchronous Space Objects Taking Impulse Maneuver


    Beteiligte:
    Zhang, Jingrui (Autor:in) / Jiang, Yihang (Autor:in) / Cai, Han (Autor:in) / Yang, Yang (Autor:in)


    Erscheinungsdatum :

    01.04.2025


    Format / Umfang :

    5256315 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Cython Bound Tracklet- Tracklet Correlation for Resident Space Objects

    Rack, Kathrin / Schmitz, Simon / Stoffers, Martin et al. | IEEE | 2023


    Short-arc tracklet association for geostationary objects

    Siminski, J.A. | Online Contents | 2014


    Applying Graph-Based Clustering to Tracklet-Tracklet Correlation

    Griese, Franziska / Rack, Kathrin / Schmitz, Simon et al. | TIBKAT | 2023


    Optical Tracklet-to-Tracklet Correlation with Control-Distance Metrics

    Mao, Xuejian / Zhou, Zihan / Chen, Pei | AIAA | 2025


    Geosynchronous Satellite Maneuver Classification via Supervised Machine Learning

    Roberts, Thomas G. | British Library Conference Proceedings | 2021