Scenario-based verification and validation (V&V) has emerged as the predominant approach for the performance evaluation of automated driving systems (ADSs). Many scenario-generation methods have been proposed to search for critical scenarios, i.e. disengagement or traffic rule violations. However, the widely adopted binary (pass/fail) criterion suffers from two main limitations, i.e., the difficulty of locating root causes and the lack of statistical guarantee of testing sufficiency. Recently, new scenario engineering approaches focusing on the intelligence of ADSs enlightened a promising pathway via dynamic driving task decomposition and function atom constraints. However, none of the state-of-the-art scenario description languages support such approaches. To fill this gap and facilitate further research into this promising direction, in this work, we propose a generic architecture to extend the existing scenario description languages for the intelligence testing of ADSs. The case study with WMG SDL demonstrates the capability and flexibility of the proposed extension design in defining intelligence function constraints.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Augmenting Scenario Description Languages for Intelligence Testing of Automated Driving Systems


    Beteiligte:
    Tang, Yun (Autor:in) / Bruto Da Costa, Antonio A. (Autor:in) / Irvine, Patrick (Autor:in) / Dodoiu, Tudor (Autor:in) / Zhang, Yi (Autor:in) / Zhao, Xingyu (Autor:in) / Khastgir, Siddartha (Autor:in) / Jennings, Paul (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1241594 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Incorporating Human Factors into Scenario Languages for Automated Driving Systems

    Dodoiu, Tudor / da Costa, Antonio A. Bruto / Khastgir, Siddartha et al. | IEEE | 2024


    Scenario languages for driving simulation

    Kearney, J. / Willemsen, P. / Donikian, S. et al. | British Library Conference Proceedings | 1999


    Fundamental Considerations around Scenario-Based Testing for Automated Driving

    Neurohr, Christian / Westhofen, Lukas / Henning, Tabea et al. | IEEE | 2020


    FUNDAMENTAL CONSIDERATIONS AROUND SCENARIO-BASED TESTING FOR AUTOMATED DRIVING

    Neurohr, Christian / Westhofen, Lukas / Henning, Tabea et al. | British Library Conference Proceedings | 2020