A dependable traffic route optimization system and an accurate traffic simulation model is crucial for effective traffic management system. The creation of a more efficient traffic management system is hampered by the absence of a realistic traffic simulation data. Missing data is one of the fundamental causes of hindrance, because it will certainly result in inaccurate predictions of congestion levels and less effective reconfiguration. Both future traffic data mining and real-time traffic monitoring are impacted by these missing numbers. In this paper we used transfer learning-based algorithm to fill in the gaps of those missing data. This process of data recreation will help the existing traffic management system by improving its accuracy and efficiency which will directly improve the working of traffic simulation models and traffic route optimization systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Missing Data Analysis in Traffic Monitoring System Using LSTM


    Beteiligte:
    Jain, Rishabh (Autor:in) / Dhingra, Sunita (Autor:in) / Joshi, Kamaldeep (Autor:in)


    Erscheinungsdatum :

    01.12.2022


    Format / Umfang :

    366863 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Intelligent Traffic Prediction Using LSTM Network

    Vidya, G. S. / Hari, V. S. / Shivasagaran, Suryakumar | Springer Verlag | 2021


    Short-Term Traffic Flow Prediction: Using LSTM

    Poonia, Pregya / Jain, V. K. | IEEE | 2020


    Traffic flow prediction method and system containing missing data

    JIN YANI / LIU CAIPING / XIE KUN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic Vehicle Tracking and Trajectory Classification Using LSTM

    Konapalli, Kumar / Peddapothula, YaswanthPavan / Ghosh, Nirmalya | IEEE | 2024