In this work, Vision-based obstacle size estimation algorithm and distance estimation based on the LIDAR (Light Detection and Ranging) sensor for autonomous navigation of MAV (Micro Aerial Vehicle) were proposed. First, the LIDAR sensor installed on the MAV was used to measure the obstacle distance. When the threshold distance between the MAV and the obstacle is equal to 1.5m, then the obstacle size (width and height) can be measured using the object images acquired using the camera sensor based on the proposed vision-based object size measurement algorithm. The collision can be avoided with the obstacle using the LIDAR sensor which works on time on flight principle, in addition to that based on obstacle’s width and height with the tolerance of 0.01m, the MAV can change the flight route by either increase the altitude or roll/yaw. In addition, the proposed obstacle detection and collision avoidance algorithm implemented using the Raspberry Pi 3 flight controller can be used for real-time collision avoidance with obstacles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Integration of Vision and LIDAR for Navigation of Micro Aerial Vehicle


    Beteiligte:
    Sakthivel, P (Autor:in) / Anbarasu, B (Autor:in)


    Erscheinungsdatum :

    11.12.2020


    Format / Umfang :

    640600 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Monocular Vision-based Obstacle Avoidance Scheme for Micro Aerial Vehicle Navigation

    Karlsson, Samuel / Kanellakis, Christoforos / Mansouri, Sina Sharif et al. | IEEE | 2021


    Vision based navigation for an unmanned aerial vehicle

    Sinopoli, B. / Micheli, M. / Donato, G. et al. | Tema Archiv | 2001



    Vision-aided aerial navigation

    MA YUNQIAN | Europäisches Patentamt | 2020

    Freier Zugriff

    Vision-aided aerial navigation

    MA YUNQIAN | Europäisches Patentamt | 2018

    Freier Zugriff