This paper describes a new method for fuzzy segmentation based on spatial constraints. Taking into account the neighborhood influence two techniques are used. First a new feature is derived from Peano scans to represent a spatial relationship among neighbors. Second we incorporate a regularization term to fuzzy C-means algorithm (FCM). The algorithm is tested on both synthetic and multispectral images. Experimental results are presented and discussed. They show the effectiveness of the method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A modified FCM with optimal Peano scans for image segmentation


    Beteiligte:
    Hafiane, A. (Autor:in) / Zavidovique, B. (Autor:in) / Chaudhuri, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    139765 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Modified Fcm with Optimal Peano Scans for Image Segmentation

    Hafiane, A. / Zavidovique, B. / Chaudhuri, S. | British Library Conference Proceedings | 2005



    Optimal nonlinear interpolation of image line scans [5014-58]

    Gaulden, R. A. / Gustafson, S. C. / Society for Imaging Science and Technology | British Library Conference Proceedings | 2003


    Concurrent Edge/Region Detection from a Peano Scan

    Seetharaman, G. / Bouchafa, S. / Zavidovique, B. et al. | British Library Conference Proceedings | 2001


    Concurrent edge/region detection from a Peano scan

    Seetharaman, G. / Bouchafa, S. / Zavidovique, B. | IEEE | 2001