The rapidly increasing popularity of micromobility devices, such as e-scooters and bicycles, in urban environments underscores the critical need for advanced trajectory prediction models to enhance road safety and facilitate seamless integration into intelligent transportation systems. This study introduces a novel approach to predicting the movements of bicyclists and e-scooter riders by leveraging a unique dataset that combines bird's-eye and egocentric views, collected from diverse urban settings across the United States. Employing state-of-the-art deep learning techniques, our model significantly outperforms traditional linear and polynomial regression models in terms of Average Displacement Error (ADE) and Final Displacement Error (FDE), demonstrating superior accuracy in forecasting the trajectories of vulnerable road users. Furthermore, our approach incorporates cognitive annotations to predict crossing intentions, enriching the model's predictive capabilities. The findings highlight the potential of our method to contribute to the development of proactive safety measures and collision avoidance systems, ultimately fostering safer urban mobility landscapes for all road users.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intent-Guided Trajectory Prediction for E-Scooter Riders and Bicyclists


    Beteiligte:
    Zhang, Zhengming (Autor:in) / Ding, Zhengming (Autor:in) / Chen, Yaobin (Autor:in) / Chien, Stanley (Autor:in) / Li, Lingxi (Autor:in) / Sheroy, Rini (Autor:in) / Domeyer, Joshua (Autor:in) / Tian, Renran (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    4500531 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    How e-scooter riders navigate road safety hazards –Understanding the perceptions and strategies of regular riders

    Juliane Anke / Madlen Ringhand / David Schackmann et al. | DOAJ | 2025

    Freier Zugriff

    Can you Park your Scooter There? Why Scooter Riders Mispark and What to do about it

    Anne Brown / Nicholas J. Klein / Calvin Thigpen | DOAJ | 2021

    Freier Zugriff

    Gaze Behavior of E-Scooter Riders in an Urban Environment

    Hristov, Borislav / Peukert, Daniel / Reinprecht, Klaus | Springer Verlag | 2024


    Case Study on the Traffic Collision Patterns of E-Scooter Riders

    Das, Subasish / Hossain, Ahmed / Rahman, M. Ashifur et al. | Transportation Research Record | 2023