A crucial and challenging issue in autonomous driving is dynamic road environment detection and 3D multi object tracking. In this article, we propose a novel framework for online 3D multi-object tracking to eliminate the influence of inherent uncertainty and unknown biases in point cloud. A constant turn rate and velocity (CTRV) motion model is employed to estimate the future motion state, which are smoothed by a cubature Kalman filter (CKF) algorithm. A new affinity model is introduced to evaluate the similarity between trajectories and candidate detections for accurate and reliable data association which can be formulated as a bipartite matching problem. An adaptive cubature Kalman filter (ACKF) is given to remove the influence of unknown bias and to robustly update the tracked state. Accuracy and speed of the proposed tracking method are evaluated on the KITTI 3D multi-object tracking dataset, showing superior performance than the baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    3D Multi-Object Tracking With Adaptive Cubature Kalman Filter for Autonomous Driving


    Beteiligte:
    Guo, Ge (Autor:in) / Zhao, Shijie (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2023


    Format / Umfang :

    1288683 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    IMM-cubature quadrature Kalman filter for manoeuvring target tracking

    Radhakrishnan, Rahul / Singh, Abhinoy Kumar / Bhaumik, Shovan et al. | IEEE | 2015


    An Adaptive Cubature Kalman Filter Algorithm for Passive Location

    Haojie, Peng / Jie, Zhang / Weisheng, Shi | IEEE | 2020


    A seventh‐degree cubature kalman filter

    Meng, Dong / Miao, Lingjuan / Shao, Haijun et al. | British Library Online Contents | 2018