An empirical mode decomposition based recurrent Hermite neural network (ERHNN) prediction model is proposed to predict short-term traffic flow in this study. First, a recurrent Hermite neural network (RHNN) prediction model with different orthonormal Hermite polynomial basis functions (OHPBFs) as activation functions is introduced. Then, to further mitigate the influence of noise and improve the accuracy of prediction, an empirical mode decomposition (EMD) method is derived to decompose the original short-term traffic flow data into several intrinsic mode functions (IMFs) and adopt them as the inputs for the RHNNs. Therefore, an ERHNN prediction model, which comprises good predictive ability for the nonlinear and non-stationary signals through the combination of the merits of OHPBFs, EMD and EHNN, is proposed to predict short-term traffic flow more effectively. The validity of the ERHNN prediction model is verified using all day short-term traffic flow data at high way I-80W in California. Simulation results demonstrate that the proposed ERHNN prediction model is with superior performance compared with the pure recurrent neural network (RNN) and RHNN prediction models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-term traffic flow prediction using EMD-based recurrent Hermite neural network approach


    Beteiligte:
    Syuan-Yi Chen, (Autor:in) / Wei-Yao Chou, (Autor:in)


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    736219 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Short-term Traffic Flow Prediction Based on Recurrent Neural Network

    Li, Zhijie / Li, Chenghao / Cui, Xu et al. | IEEE | 2021


    Short-term traffic flow prediction with LSTM recurrent neural network

    Kang, Danqing / Lv, Yisheng / Chen, Yuan-yuan | IEEE | 2017


    Short-term traffic flow prediction method based on graph convolution recurrent neural network

    GU JUNHUA / GUO RUIZHE / HE WENYING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Time Slot Recurrent Neural Networks for Short-Term Traffic Flow Prediction

    Qu, Licheng / Qie, Liyuan / Li, Xinze et al. | IEEE | 2022